
How Ghidra changed my life
Chris Eagle

Kernelcon - 2020

Who am I

• Chris Eagle
• Reverse Engineer

• CTF player

• Long time IDA Pro user

• Teacher

• Author

• Speaker

Why are we here?

•Ghidra released by NSA in early 2019

•What does it mean for IDA users?
• Mostly it means, they’re still using the right tool
• Maybe it will drive innovation in IDA

• We have undo now!

What’s Ghidra got that IDA doesn’t?

•Primarily three features
• Low price tag

• Out of our control

• Collaboration server
• Many efforts to bring collaboration to IDA, but really need Hex-

Rays to do this properly

• Decompilers for all architectures
• This we can fix

The Ghidra Decompiler

• Ghidra is written in Java
• Mostly

• The decompiler is written in C++
• Ghidra launches the decompiler as a child process and

communicates with it over pipes

• C++ source for the decompiler is available in the Ghidra
source repo

• Why not borrow the decompiler for our own use?

Using Ghidra’s Decompiler

• At least three efforts

Talos - https://blog.talosintelligence.com/2019/09/ghida.html

Radare2 - https://github.com/radareorg/r2ghidra-dec

blc - https://github.com/cseagle/blc
The subject of this talk

https://blog.talosintelligence.com/2019/09/ghida.html
https://github.com/radareorg/r2ghidra-dec
https://github.com/cseagle/blc

Talos

• GhIDA: Ghidra decompiler for IDA Pro

• Requires local Ghidra installation
OR

• Ghidraaas (Ghidra as a Service)
• “docker container that exposes the Ghidra decompiler through

REST APIs.”

• Uses Ghidra’s idaxml.py to export database to xml

• Shells to headless Ghidra to import xml and decompile

• Renders result in IDA

r2ghidra-dec

• Integrates decompiler’s C++ components directly into
radare2

• No need to run Ghidra

• Commands expose different types of decompiler output
• XML

• JSON

• C

BLC

• Officially Binary Lifting Component

• Unofficially Bastard Love Child

• Similar concept to r2ghidra-dec

• Integrate required Ghidra decompiler sources
into IDA C++ plugin
• No change to Ghidra sources

• Subclass key decompiler classes to bridge to IDA

• Ghidra decompiler can generate xml, json, or C
• Plugin consumes xml because it’s easier to recover the block

structure of the code

• Didn’t want to write or integrate a C parser

Installation

• If you intend to build from source
• Need IDA SDK
• Clone https://github.com/cseagle/blc.git into <idasdk>/plugins

• Visual Studio – build with blc.sln

• Linux/Mac – use provided Makefile (may need to adjust paths to your
IDA install location)

• If you’re courageous you can use the binaries in
blc/bins/<platform>/<idaversion>

• Copy plugins blc.(dll/so/dylib) and blc64.(dll/so/dylib) to
<idadir>/plugins

https://github.com/cseagle/blc.git

Ghidra Dependency

• No need to run Ghidra, but decompiler needs Ghidra’s
SLEIGH files
• These define Ghidra processor modules and how to generate

P-code

• Copy entire Ghidra/Processors hierarchy from a Ghidra distro
into <idadir>/plugins so that you have
<idadir>/plugins/Ghidra/Processors/…

Usage

• Alt-F3 decompiles current function

• Display and UI strives to mimic Hex-Rays decompiler (but far
fewer features)

• Double-click a function name to decompile that function

• ESC to navigate back

• N to rename local variables, parameters, and functions
• Every attempt made to map Ghidra names to IDA names

Demos

• I laugh at the demo gods! No videos here

TODO
• Integrate IDA type system with Ghidra type system

• Test with less common architectures
• Decompiler requires valid Ghidra language ID string.

• Best effort is made to derive one from available IDA information

• Very few architectures tested so far
• Lack of test binaries for most architectures

• Add more features similar to Hex-Rays decompiler
• Currently no context menu actions

• Name demangling

• Structure handling

Conclusion

• Questions

• Feedback and merge requests welcome

