
© 2020 CONFIDENTIAL

Keto AppSec: It’s
All About the
FATS

David Lindner, Director, Application Security March 27, 2020

2

class Speaker {

let name = “David Lindner”

let title = “Director, Application Security”

let company = ”Contrast Security”

let twitter = “@golfhackerdave”

var hobbies = [“Dadding”, ”Golfing”,
“IoT/Mobile”, “Fishing”, “Hawkeyes”]

}

WHO IS THIS GUY?

Not so breaking news
Software Applications are vulnerable…and they are being attacked.

The Average Application

Average serious
vulnerabilities:

26.7
Average serious
vulnerabilities:

26.7
2000 2019

Software
Security
Crisis

1970

Formal
Methods

1991

SW CMM

1985

TCSEC
DOD 5200.28

1997

SSE-CMM

1998

Vulnerability
Disclosure

1999

Penetration
Testing

1998

Common
Criteria

2001

OWASP
T10

2002

Dynamic
Scanning

2002

Static
Analysis

2002

WAF

2003

Developer
Training

2009

BSIMM
OpenSAMM

2013

DevOps

2005

Compliance

2017

DevSecOps

2016

Shift Left

Likelihood your
application/api
gets attacked

Jan/Feb 2020

Hackers are Exploiting the Lag…
How Fast Can you Respond?

March 7
CVE-2017-5638
Disclosed, Apache
releases fixed version

March 8
Widespread attack
probes observed

Mid-May
Equifax
breach
occurs

July 29
Equifax
learns of
breach

Sept 7
Equifax discloses,
Four more Struts2
CVEs disclosed

No Updates DisasterNo Detection

Not so breaking
news #2

Software
development
continues to

accelerate…and
leverage new
approaches.

Fundamental change on the path to an application

3-12 month release cycles

Developer
IDE Unit Testing QA &

Staging Production

Dev App

MVP

2-4 week release cycles

The (other) reality of software today

Vulnerable
Vulnerable

Vulnerable components = exposed software = higher (inherited) risk

Software
Approaches
Change
Rapidly

Agile; DevOps Microservices;
APIs

Containers;
PaaS; Cloud

Native
CI/CD

Out of 122 BSIMM 10 organizations

• 1.37% software security
group to developers
• That’s 1 software security

professional to every 73
developers

13

IMPOSSIBLE ECONOMICS: SOFTWARE SECURITY

SOFTWARE
SECURITY
CRISIS

specialized security staff

secure code: 10X more, faster

ap
pl

ic
at

io
ns

 to
 ru

n
th

e
bu

si
ne

ss

time

tools budget

The OLD way

The OLD way

I have 1500 applications

THEY ALL MUST BE
TESTED

Manual tests
SAST/DAST

Stop development
while we find
problems

Where could
we go wrong
with this?

The OLD way

• Security is seen as a blocker
• Everything is fought
• Reports go “missing”

• Security debt increases
• Security posture is unknown except when

report was created

The OLD way

Result of the OLD way - Gating

Security has the exact problems development had

• Problem: software is poor
quality, late, slow, and doesn’t
provide business value.

• Proven Approach: DevOps

• Result:
• 5x lower change failure rate
• 96x faster MTTR service
• 2x likely to exceed business goal

• Problem: security is poor quality,
late, slow, and doesn’t provide
business value.

• Possible Approach: DevSecOps

• Desired Result:
– 10x increase in portfolio coverage?
– 80% reduction in vulns to prod?
– 0x increase in time to market

The existence of insecure
software has so far helped
society far more than it has
harmed it.
- Daniel Miessler

- https://danielmiessler.com/blog/the-
reason-software-remains-insecure/

https://danielmiessler.com/blog/the-reason-software-remains-insecure/

How can we deliver 10X
more secure code that

protects the integrity of
the business?

How can we focus and do things securely faster?

FATS
“F is for Frameworks”

What do frameworks
do for us?

• REACT and Angular
• XSS Protections by default

• Node
• helmet
• csurf

• Ruby on Rails
• protect_from_forgery with: :exception
• Mass assignment is pretty much fixed
• devise or authlogic password storage

• Go
• gorilla/csrf
• gorilla/securecookie
• crypto.random
• html/template

• PHP Laravel
• Salted/hased passwords with bcrypt
• Prepared Statements
• Mass Assignment protections

What does it mean?

• Know your frameworks
• Customize your testing
• Focus on the things that you aren’t

protected from

FATS
“A is for Automation”

27

IDE
Spellcheckers

LEGACY TOOL QUAGMIRE
Disparate, static, disconnected, inaccurate; requires an army of specialists to interpret results

SCA

SAST
Full Scan

Fuzzing

NGWAF

WAF

SAST
Quick Scan

IPS
Manual
Code

Review

DAST

Manual
Pentesting

SOFTWARE
SECURITY

Modern software tools work differently
Collaborative, real-time, full lifecycle, integrated, and social

BUILD QUALITY PERFORMANCE COLLABORATION SOFTWARE
SECURITY

?

ANALYTICS

YOUR SOFTWARE PROCESS AND PIPELINE

Lots of security tooling

Need to Streamline

IDE Code Repo CI/CD

Defect Tracker

Infrastructure

Dev: how we use tools and automation to secure
code

Our dev setup

PHILOSPHY

• Automated from the Beginning, Keep it Small, Boring Releases

TOOLING

• IDE: IntelliJ

• CI/CD/SCM: Bitbucket Pipelines

• Artifact Repository: Artifactory

• ChatOps: Slack

• Automated Scans: Burp Enterprise (COMING SOON)

• Bug tracking: JIRA

• AppSec: Contrast Assess and Protect

SETUP

• Run pipeline on all branches; Maven plugin to configure and include Java Agent

Our dev workflow

What are we trying
to acheive

• Identify vulnerabilities at DevOps speed

• Accurate results

• Simplified and integrated AppSec

• Continuous coverage

• Automation

• Application intelligence

• Smart response and 0-day protection

• Security anywhere

What if you could kill entire
vulnerability classes with
automation?
• XSS

• SQL/NoSQL Injection

• Command Injection
• CSRF

• EL/OGNL Injection
• Untrusted Deserialization

• XXE

• Padding Oracle

Empower Development to
Weave Security In

• Expanding Security beyond the InfoSec/AppSec team
• Security Champions within Development,

Architecture & Leadership

• Keys to Success:
• Self-selection
• Visibility & Praise
• Incentives

FATS
“T is for Threats”

Managing
Risks/Threats/Attacks

• Risk rating

• ASVS – helps with rigor

• CVE and issues monitoring

• Threat Intelligence

Software Composition
Analysis (SCA)

• Fully automated solution

• Runtime assessment and protection

• Continuous visibility

• Self updating risk intelligence

• Single solution for all your code

Manage REAL
Threats
• FUD no more

• Threat Intelligence
• WAF or RASP data
• Intelligence tools?
• Other indicators

• Predictive Analysis

• For instance …. XSS

What’s not FUD?

SQL Injection
• https://en.wikipedia.org/wiki/SQL_injection#Examples

Untrusted Deserialization
• WebLogic RCE - https://nvd.nist.gov/vuln/detail/CVE-2019-2725
• Struts 2 - https://nvd.nist.gov/vuln/detail/CVE-2017-9805

• Equifax

OGNL Injection
• Struts 2 - https://nvd.nist.gov/vuln/detail/CVE-2018-11776

https://en.wikipedia.org/wiki/SQL_injection
https://nvd.nist.gov/vuln/detail/CVE-2019-2725
https://nvd.nist.gov/vuln/detail/CVE-2017-9805
https://nvd.nist.gov/vuln/detail/CVE-2018-11776

XSS - .09%
CVSS 5 and

up

SQL Injection
- 97% CVSS 6

and up

CMD Injection 95% CVSS 6 and up

41%

55%

1%

17%

0.005%

44%

59%

1%

18%

0.006%

72%

78%

78%

65%

0.012%

92%

97%

97%

90%

0.07%

95%

98%

99%

96%

0.09%

99%

100%

100%

99%

75%

0% 20% 40% 60% 80% 100% 120%

CWE-77 (COMMAND INJECTION)

CWE-78 (OS COMMAND INJECTION)

CWE-89 (SQL INJECTION)

CWE-502 (UNTRUSTED DESERIALIZATION)

CWE-79 (XSS)

% of CVE by CVSS Score

>=4 >=5 >=6 >=7 >=8 >=9

FATS
“S is for Speed and Sophistication”

Don’t blame speed

SECURING FAST-CHANGING
THINGS IS DIFFERENT

48

DevOps speed is held back
by a 15-year-old, scan and perimeter-
based software security model

Built for the pre-cloud era

Continuous
Integration
and
Delivery

Management
Console

IAST
IAST

Time for Sophisticated
Things
• Cyber talent shortage is real

• Frameworks won’t solve everything

• Tools can’t find everything, especially
the extremely complex or custom
security controls

• So focus on the hard stuff with your
expensive cyber security assets

Examples of Sophisticated things

Authorization

Integrations

Cloud Native / Micro Services / Serverless

Threat modeling

Secure Design

When to train/when to do

What does this all mean?

Shift EXTEND left, right, and everywhere!

SECURITY IN
DEVELOPMENT

SECURITY IN
INTEGRATION

SECURITY IN
OPERATIONS

PROTECT
• Tell me who is attacking and how
• Stop vulnerabilities from being

exploited
• Don’t create alert fatigue

ASSURE
• Don’t slow down my builds
• Integrate with my testing tools
• Critical vulns break my build

EMPOWER
• Have some trust in frameworks
• Real time test 1st party and 3rd party
code

• Realtime feedback through my tools
• Don’t slow me down

5454

Evolve Tools to Secure Modern
Software

Automated application security distributed across all software development
and delivery pipelines; assess and protect microservices/APIs; native
support for cloud-native apps

APPSEC IN THE MODERN DEV WORLD

Enable Developer Self
Sufficiency

Self-service application security integrated into the developer workflow;
developers automatically find and fix vulnerabilities, without reliance on
security experts

Automate Open Source Risk
Management

Open source security and compliance controls automatically embedded in
CI/CD; teams stay on top of risk introduced by use of open source; always
on monitoring and protection

Accelerate Digital
Transformation;

Protect Legacy Portfolio

A single solution to secure on-premises, cloud and hybrid apps at scale;
drive cloud adoption and app modernization, while defending your legacy
application portfolio

Optimize Penetration Testing Strategically focus investment in manual penetration testing on complex
security weaknesses; Increase fidelity and action-ability of results

Ensure Continuous Visibility Real-time visibility into security posture across the enterprise; continuous
monitoring and intelligence across the SDLC; streamlined compliance

55

Thanks! Ask me anything!

David Lindner - @golfhackerdave

