
Adventures in Creating a Cybersecurity Dataset

Heather Lawrence @infosecanon *Nebraska Applied Research Institute*

About Me

- Data Scientist with NARI
- PhD student @ UCCS
- 6 Years USN
- Hack@UCF, NCCDC
- B-Sides Orlando Board Member, VetSec Board Member, DEF CON Goon, and Kernelcon volunteer

at the University of Nebraska

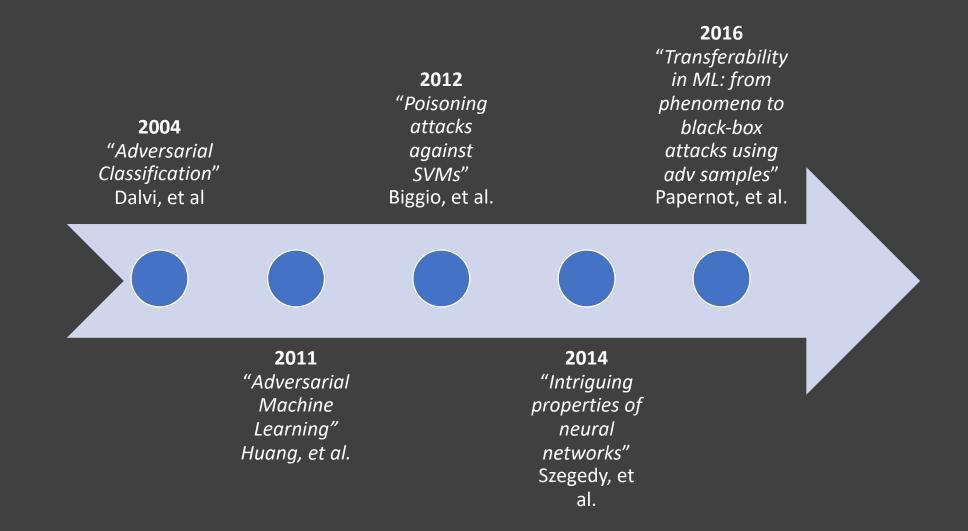
Outline

- Best Practices
- Motivation (Why we did the thing)
- Design (What we did)
- Challenges (Why this talk is labeled as an 'adventure')
- Resources
- Outro

Best Practices (Gharib et al 2016)

- Complete network configuration
- Complete traffic
- Labelled dataset
- Complete interaction
- Complete capture
- Available protocols
- Attack diversity
- Heterogeneity
- Feature set
- Metadata

Best Practices (Shiravi et al)

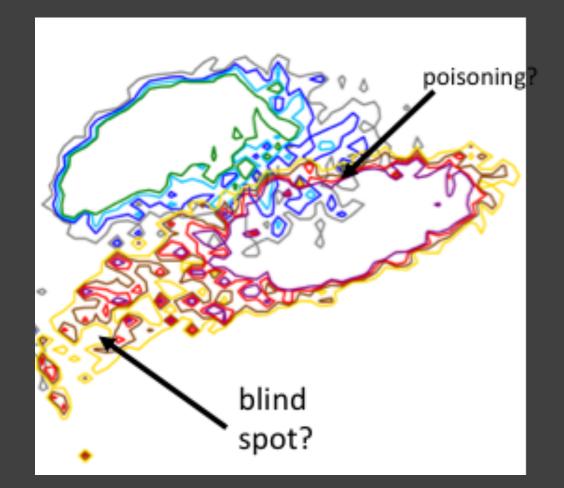

• Guidelines to creating your own dataset (Shiravi et al):

- Up-to-date network-based data and protocols
- Publicly available
- Real network traffic
- A variety of malicious and normal user behavior
- Payload

Motivation – Why we did the thing

- Intrusion detection used to rely on signatures
- But signatures can be changed by changing trivial parts of the attack (generally the payload)
- Machine learning will save us!
- Wait... adversarial machine learning is a thing
- Several authors have complained about a lack of usable data (Sommer and Paxson 2010) as late as 2017
- Can't test IDS-specific machine learning algorithms without usable data
 - Can't compare results unless the data is open access

Brief Timeline in Adversarial ML



Types of Attacks

- Causative
 - Manipulation of training data
- Data Poisoning
 - Specially crafted attack points are injected into the training data
- Exploratory
 - Exploit the classifier itself
- Hybrid
 - A combination of the aforementioned

Blind Spots

- Regions in a model's decision space where the decision boundary is inaccurate
- Reason: No training data was provided
- Ongoing research area

Tully and Anderson, *Navigating the Labeling Bottleneck as Security Embraces AI*, RSA Conference 2018

Computer Vision vs. Intrusion Detection

Practical Black-Box Attacks against Machine Learning

Nicolas Papernot Pennsylvania State University ngp5056@cse.psu.edu

Somesh Jha University of Wisconsin jha@cs.wisc.edu Patrick McDaniel Pennsylvania State University mcdaniel@cse.psu.edu

Z. Berkay Celik Pennsylvania State University zbc102@cse.psu.edu lan Goodfellow OpenAl ian@openai.com

Ananthram Swami US Army Research Laboratory ananthram.swami.civ@mail.mil

00

-

20

pr

CR S

3

Ö

 \sim

40

vulnerability of classifiers to integrity attacks. Such attacks are often instantiated by *adversarial examples*: legitimate inputs altered by adding small, often imperceptible, perturbations to force a learned classifier to misclassify the resulting adversarial inputs, while remaining correctly classified by a human observer. To illustrate, consider the following images, potentially consumed by an autonomous vehicle [13]:

To humans, these images appear to be the same: our biological classifiers (vision) identify each image as a stop sign. The image on the left [13] is indeed an ordinary image of a stop sign. We produced the image on the right by adding

Attacking Machine Learning Models as Part of a Cyber Kill Chain

North Carolina State University tam.nguyen@ncsu.edu

Abstract—Machine learning is gaining popularity in the netvork security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and us new technologies like Software Defined Networking emerge. Compromising machine learning model is a desirable goal. In fact, spammers have been quite successful getting through nachine learning enabled spam filters for years. While previous works have been done on adversarial machine learning, none has been considered within a defense-in-depth environment, in which correct classification alone may not be good enough. For the first ime, this paper proposes a cyber kill-chain for attacking machine earning models together with a proof of concept. The intention s to provide a high level attack model that inspire more secure processes in research/design/implementation of machine learning pased security solutions.

Index Terms—machine learning, cybersecurity, secure development, adversarial machine learning, threat model.

I. INTRODUCTION

There is a significant gap between the amounts of connected levices and the number of cyber security professionals. Per limitations of existing ML algorithms being used by S.O. Within that sub-picture, the paper formalizes ML specific threats into an attack model - the ML cyber kill chain. Finall the paper proposes a list of recommendations for a more secuprocess of designing new ML-based security solutions.

April 05, 20

II. BACKGROUNDS ON S.O.C PROCESSES

Security Operation Center (S.O.C) is part of a "Defenin depth" strategy. Metaphorically, "defense in depth" like an artichoke, consisting of interlaced, overlapping-buindependent protection layers backing each other. When som of its layers got pealed away, an artichoke still maintain almothe same shape (posture). In response, adversaries employ "advanced persistent" attack strategies in which persiste organized efforts can be categorized into phases also know as "intrusion kill chain" [12].

ABSTRACT Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and

labeled by the target DNN. We use the local substitute to

19 Mar 2017

cs.CR]

Motivation

- Intrusion detection used to rely on signatures
- But signatures can be changed by changing trivial parts of the attack (generally the payload)
- Machine learning will save us!
- Wait... adversarial machine learning is a thing
- Several authors have complained about a lack of usable data (Sommer and Paxson 2010) as late as 2017
- Can't test IDS-specific machine learning algorithms without usable data
 - Can't compare results unless the data is open access

Motivation

• Are there datasets out there that do this?

Related Work – KDD99

- Most cited dataset (also the oldest 1999)
- Dataset was created by monitoring a simulated Air Force network for weeks
- Simulated dataset that doesn't reflect current attack techniques or methodologies
- Don't contain real packet headers or data

 Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar Das. Analysis and results of the 1999 DARPA off-line intrusion detection evaluation. pages 162–182, 10 2000.

Related Work – SSH Attacks

- Dataset consisting of University of Twente campus network traffic (100 servers, workstations, and honeypots)
- Attacks and detections limited to SSH
- Contained flow data and host log files

 Rick Hofstede, Luuk Hendriks, Anna Sperotto, and Aiko Pras. SSH compromise detection using netflow/ip-fix. ACM SIGCOMM computer communication review, 44(5):20–26, 2014.

Related Work – UNSW-NB15

- Used IXIA PerfectStorm tool to generate nine families of attacks
- Traffic captured using tcpdump, distilled into netflows using Argus, and analyzed using Bro-IDS (now known as Zeek)
- Attack labels are generated programmatically using the IXIA tool
- 49 features, protocols include HTTP, FTP
- Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.

Related Work – AWID

- The Aegean Wi-Fi Intrusion Dataset is a curated 802.11 collection containing wireless benign and attack traffic
 - Attacks are tool generated
- Normal traffic is human generated
- Used Kali Linux to conduct penetration testing and Wireshark to log traffic
- Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos Gritzalis. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 18(1):184–208, 2015.

Related Work – CTU-13

- Collection of 13 pcaps focused on botnet traffic
- Paper introduces a method of detecting botnet traffic (BotHunter)
- Garcia, Sebastian, et al. "An empirical comparison of botnet detection methods." *computers & security 45* (2014): 100-123.

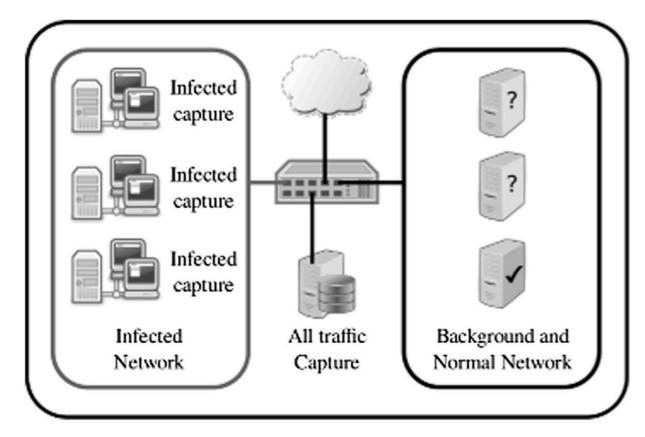
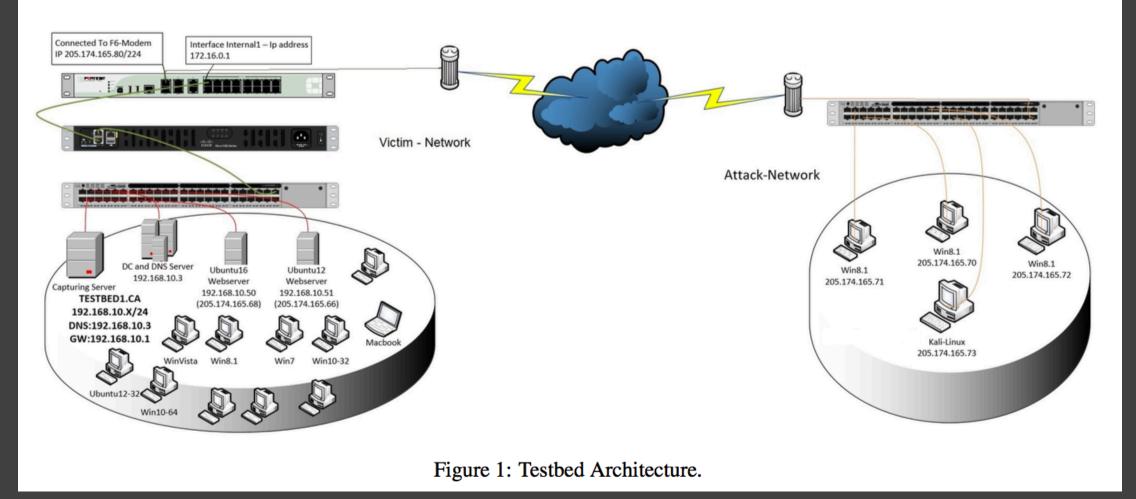



Fig. 3 – Testbed network topology.

Related Work – CICIDS 2017

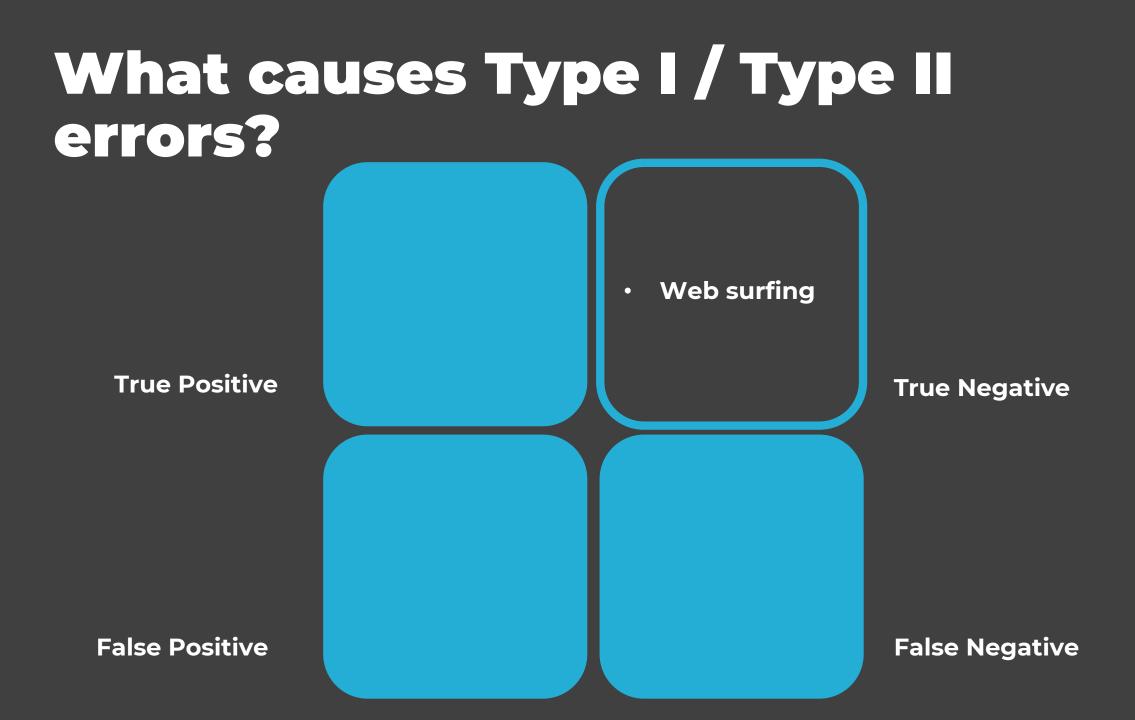
Sharafaldin, Iman, Arash Habibi Lashkari, and Ali A. Ghorbani. "Toward generating a new intrusion detection dataset and intrusion traffic characterization." ICISSP. 2018.

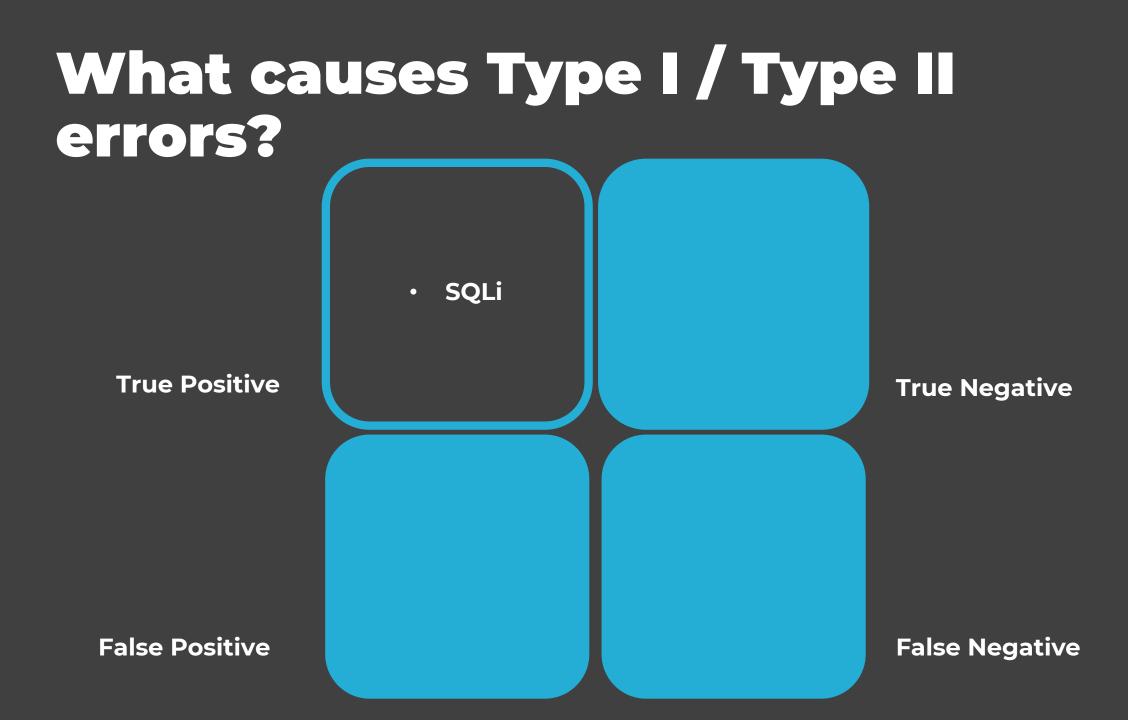
Motivation

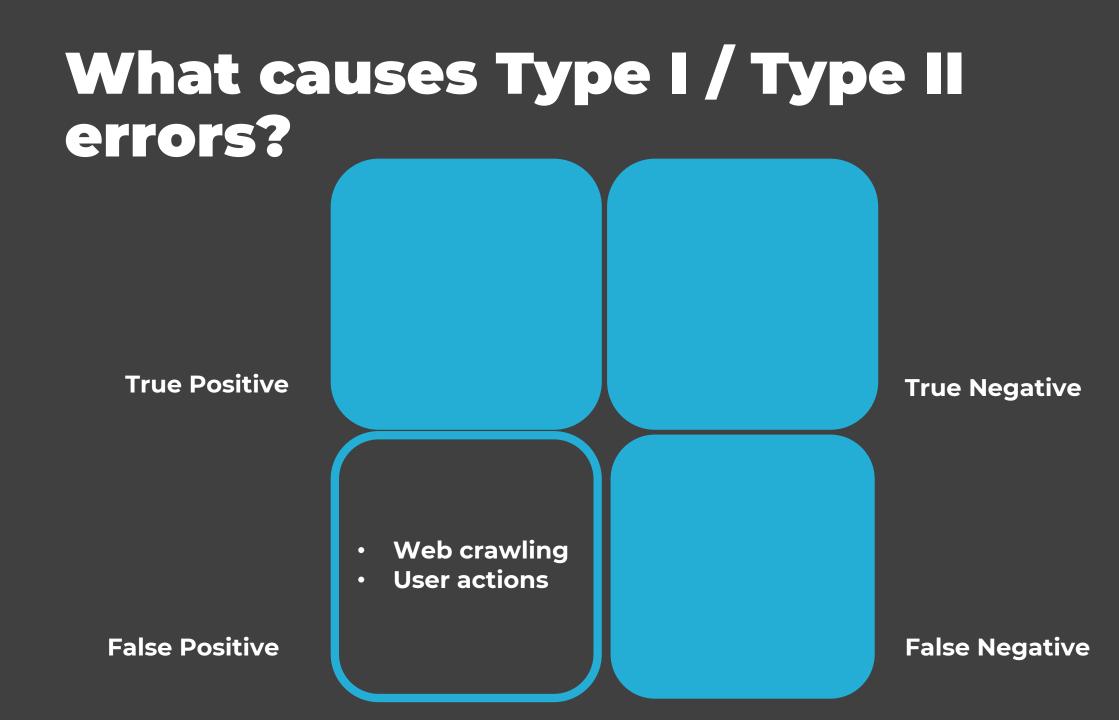
Are there datasets out there that do this?
Not really

Related Work - Datasets

- Thorough survey of network intrusion dataset papers (Ring et al)
- Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas Hotho. A survey of network-based intrusion detection data sets. Computers & Security, 2019.
- https://arxiv.org/pdf/1903.02460.pdf

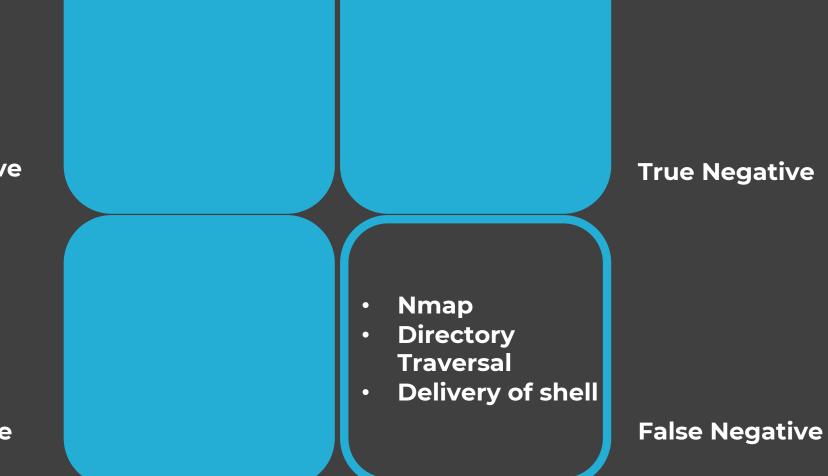

Jason Trost @jason_trost

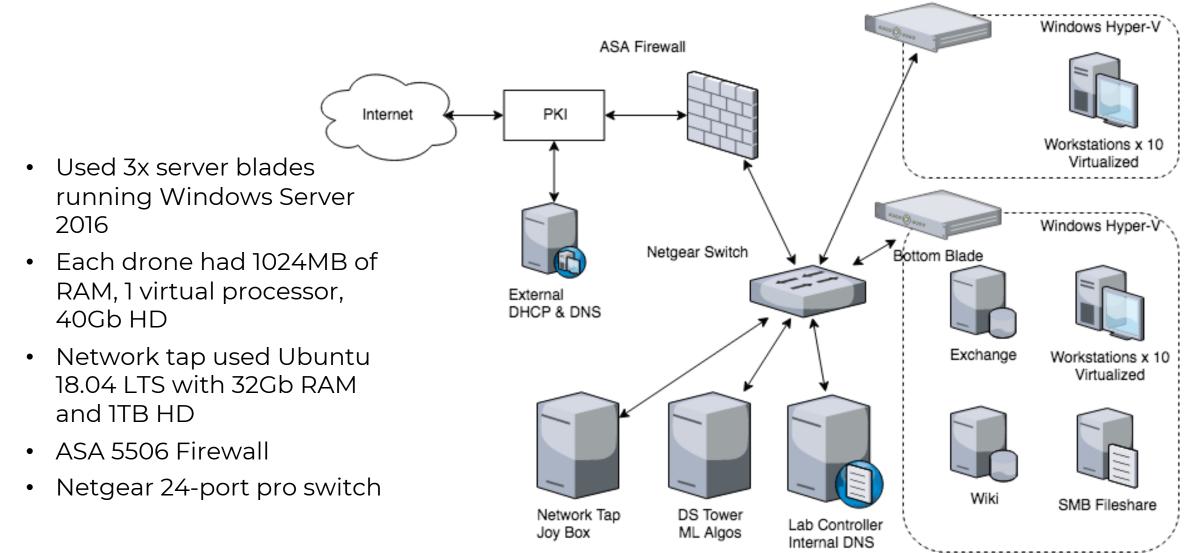

A Survey of Network-based Intrusion Detection Data Sets arxiv.org/pdf/1903.02460...


						OVE	RVIEW OF NET	WORK-BASED DA	TA SETS.						
	I Ge	neral Info	ormation		1	Nature of the	Data	Data Ve	olume	I R	ecording Environmen	nt	1	Evaluati	on
Data Set	Year of Traf- fic Creation	Public Avail.	Normal Traffic	Attack Traffic	Meta- data	Format	Anonymity	Count	Duration	Kind of Traffic	Type of Network	Compl. Network	Predef. Splits	Balanced	Labele
AWID [49]	2015	0. r .	ves	yes	ves	other	none	37M packets	1 hour	emulated	small network	yes	ves	no	ves
Booters [50]	2013	yes	no	yes	no	packet	ves	250GB packets	2 days	real	small network	no	no	no	no
Botnet [5]	2010/2014	yes	yes	yes	yes	packet	none	14GB packets	n.s.	emulated	diverse networks	ves	yes	no	ves
CIC DoS [51]	2012/2017	yes	yes	yes	no	packet	none	4.6GB packets	24 hours	emulated	small network	yes	no	no	yes
CICIDS 2017 [22]	2017	yes	yes	yes	yes	packet, bi. flow	none	3.1M flows	5 days	emulated	small network	yes	no	no	yes
CIDDS-001 [21]	2017	yes	yes	yes	yes	uni. flow	yes (IPs)	32M flows	28 days	emulated and real	small network	yes	no	no	yes
CIDDS-002 [27]	2017	ves	ves	yes	ves	uni, flow	yes (IPs)	15M flows	14 days	emulated	small network	ves	no	no	ves
CDX [52]	2009	yes	yes	yes	yes	packet	none	14GB packets	4 days	real	small network	yes	no	no	no
сти-із (з)	2013	yes	yes	yes	yes	uni. and bi. flow, paket	yes (payload)	81M flows	125 hours	real	university network	yes	no	no	yes w BG.
DARPA [53], [54]	1998/99	yes	yes	yes	yes	packet, logs	none	n.s.	7/5 weeks	emulated	small network	yes	yes	no	yes
DDoS 2016 [55]	2016	yes	yes	yes	no	packet	yes (IPs)	2.1M packets	n.s.	synthetic	n.s.	n.s.	no	no	yes
IRSC [56]	2015	no	yes	yes	no	packet, flow	n.s.	n.s.	n.s.	real	production network	yes	n.s.	n.s.	yes
ISCX 2012 [28]	2012	yes	yes	yes	yes	packet, bi. flow	none	2M flows	7 days	emulated	small network	yes	no	no	yes
ISOT [57]	2010	yes	yes	yes	yes	packet	none	11GB packets	n.s.	emulated	small network	yes	no	no	yes
KDD CUP 99 [42]	1998	yes	yes	yes	no	other	none	5M points	n.s.	emulated	small network	yes	yes	no	yes
Kent 2016 [58], [59]	2016	yes	yes	n.s.	no	uni. flow, logs	yes (IPs, Ports, date)	130M flows	58 days	real	enterprise network	yes	no	no	no
Kyoto 2006+ [60]	2006 to 2009	yes	yes	yes	no	other	yes (IPs)	93M points	3 years	real	honeypots	no	no	no	yes
LBNL [61]	2004 / 2005	yes	yes	yes	no	packet	yes	160M packets	5 hours	real	enterprise network	yes	no	no	no
NDSec-1 [62]	2016	0.f.	no	yes	no	packet, logs	none	3.5M packets	n.s.	emulated	small network	yes	no	no	yes
NGIDS-DS [19]	2016	yes	yes	yes	no	packet, logs	none	1M packets	5 days	emulated	small network	yes	no	no	yes
NSL-KDD [63]	1998	yes	yes	yes	no	other	none	150k points	n.s.	emulated	small network	yes	yes	no	yes
PU-IDS [64]	1998	n.i.f.	yes	yes	no	other	none	200k points	n.s.	synthetic	small network	yes	no	no	yes
PUF [65]	2018	n.i.f.	yes	yes	no	uni. flow	yes (IPs)	300k flows	3 days	real	university network	no	no	no	yes (II
SANTA [35]	2014	no	yes	yes	no	other	yes (payload)	n.s.	n.s.	real	ISP	yes	n.s.	no	yes
SSENET-2011 [47]	2011	n.i.f.	yes	yes	no	other	none	n.s.	4 hours	emulated	small network	yes	no	no	yes
SSENET-2014 [66]	2011	n.i.f.	yes	yes	no	other	none	200k points	4 hours	emulated	small network	yes	yes	yes	yes
SSHCure [67]	2013 / 2014	yes	yes	yes	no	uni. and bi. flow, logs	yes (IPs)	2.4GB flows (compressed)	2 months	real	university network	yes	no	no	indirec
TRAbID [68]	2017	yes	yes	yes	no	packet	yes (IPs)	460M packets	8 hours	emulated	small network	yes	yes	no	yes
TUIDS [69], [70]	2011 / 2012	0. r .	yes	yes	no	packet, bi. flow	none	250k flows	21 days	emulated	medium network	yes	yes	no	yes
Twente [71]	2008	yes	no	yes	yes	uni. flow	yes (IPs)	14M flows	6 days	real	honeypot	no	no	no	yes
UGR'16 [29]	2016	yes	yes	yes	some	uni. flows	yes (IPs)	16900M flows	4 months	real	ISP	yes	yes	no	yes w BG.
UNIBS [72]	2009	0.f.	yes	no	no	flow	yes (IPs)	79k flows	3 days	real	university network	yes	no	no	no
Unified Host and Network [73]	2017	yes	yes	n.s.	no	bi. flows, logs	yes (IPs and date)	150GB flows (compressed)	90 days	real	enterprise network	yes	no	no	no
UNSW-NB15 [20]	2015	yes	yes	yes	yes	packet, other	none	2M points	31 hours	emulated	small network	yes	yes	no	yes

Experimental Setup

- Using the network anomaly detection paradigm...
 - "This traffic is benign"
- Type I A rejection of the null hypothesis
 - False positive
 - Incorrect classification of benign traffic as malicious traffic
 - Increases operator fatigue
- Type II A non-rejection of a false null hypothesis
 - False negative
 - Malicious traffic classified as benign
 - Allows malicious traffic on the network




What causes Type I / Type II errors?

True Positive

False Positive

Design – what we did

Top Blade

Automated Data Generation

- Powershell scripts automated 'user' actions
 - 3 profiles: business, admin, engineering
- Randomly:
 - Browse to 30 Azure-hosted mirrors
 - Email another user (using the Exchange server)
 - R/W to a SMB Fileshare
 - Browse to Wiki addresses
- Automated malicious traffic generated by Kali Linux

ue)]
siness", "Engineering")]

\$\Email.psm1" -Force
es\NetworkDrive.psm1" -Force
les\WebSurf.psm1" -Force
.a\Profiles.psm1" -Force

.r = \$Metadata.FileshareLocation + \$userProfile.FileshareSubDirectory

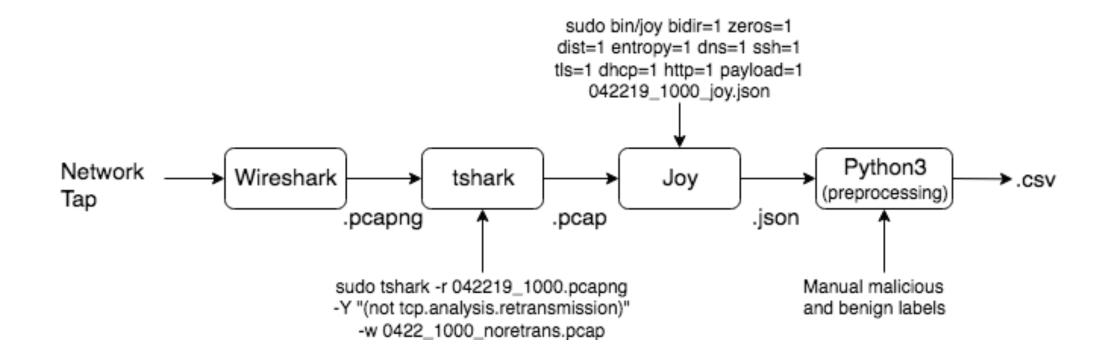
```
pop over the types of traffic
pes = "Web", "Wiki", "Email", "Sharedrive"
```

```
true) {
    lection = Get-Random -InputObject $trafficTypes
    itch ($selection) {
        "Web" {
            Write-Host "Web action selected."
            Invoke-WebSurf -Sites $userProfile.SiteArray
        }
}
```

```
"Wiki" {
```

```
Write-Host "Wiki action selected."
Invoke-WebSurf -Sites $WikiPages
```

Human Data Generation


- 10 Human subjects browsed services for 30 minutes
 - Provides a means to compare human-generated benign traffic characteristics
- Malicious traffic was generated by the same human subjects for 1 hour
 - Used Burp Suite to leverage vulns in DVWA
 - Saved us from having to build our own vulnerable web app
 - Described their intent while attacking DVWA
 - Lowered the bar of knowledge for more participation

11.7 P7

Webpage	Wiki	Fileshare	Finding vulns	Using vulns
5	5	5	3	3

- I started my connection to DVWA
- I use the file upload to open a backdoor
- First I want to use weevely. I go to the directory cd /usr/share/weevely
- Run the Python ./weevely.py generate secret my.php. This creates a php script called 'my' with the password of "secret"
- Uploaded this script to DVWA
- Changed the filename in burp from php to jpg to bypass the image filter
- Enabled the back door
- Privileges determined to be nt authority system
- Made myself an account
- Made myself an admin
- Shutdown the box

Data Collection

Data Processing

- Network traffic captures were QA'd after gathering
- Attacks were verified via PCAP review
- Ways to identify the traffic were translated into pandas dataframes rules

```
def malicious(x):
```

If traffic was from 10.10.10.4 AND the protocol was ICMP, it's malicious

if df.loc[df['pr'] == 1.0]: df['label'] == 1

Data Processing

- IPs were translated to the service provider that owns the space
 - if (ip.is_private):

return 'private'

- if ip in ipaddress.ip_network('137.48.0.0/16'):
 return 'UNO PKI'
- if ip in ipaddress.ip_network('52.0.0.0/11'):
 return 'Amazon.com, Inc.'
- Ports binned by major service while >1024 is reserved or dynamic

Reducing the unique IP feature space

- Even with reducing the amount of 3rd party advertiser traffic, the unique IP feature space was large
- Reduced by condensing traffic to the ICANN address space holder
- Used the MaxMind GeoLite2 database
- Expensive operation required multithreading and switch statements to reduce processing

Design Priorities

- Prioritized the ability to read headers in plaintext to use for machine learning features
- HTTP/2, TLS 1.3 needed further engineering
- Wanted more metadata from the TLS handshake including the ClientHello message

Secure Sockets Layer																	
TLSv1.3 Record Layer: Handshake Protocol: Client Hello																	
Content Type: Handshake (22)																	
Version: TLS 1.0 (0x0301)																	
Length: 512																	
Handshake Protocol: Client Hello																	
00d0			00									73	73	6c	2e	67	· u · · · · ·
00e0	73	74	61	74	69	63	2e	63	6f	6d	00	Øb	00	04	03	00	static.
00f0	01	02	00	0a	00	0c	00	0a	00	1d	00	17	00	1e	00	19	
0100	00	18	00	23	00	00	00	16	00		00	17	00	00	00	Ød	•••#•••
0110			00						06		Ø 8				0 8		· 0 · . · · ·
0120			08												06		
0130	03		02						03						05		
0140			00						04					03		00	+
0150			02												20		3
0160	91		e4												10		· · · · # ·
0170			fd				29		13						28		2G··-·)
0180		00			00	00	00	00	00	00	00	00	00	00		00	
0190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Challenges

• Based on the design priorities we came across a few challenges when it came to generating usable features

HTTP/2

- Originally, users browsed to a set of websites pulled from Alexa 100
 - But HTTP/2 was already enabled
 - HTTP/2 enhances the user experience by compressing the web traffic headers
- Removal of HTTP 2.0 headers was successful through cUrl

cUrl -I -tlsv1.2 -http1.1 https://www.google.com

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

tast asdba asaa

Q : = 000

PRI	•	HT	TP/	2.	Θ
				-	-

SM

Help

-rwxrwxrwx 1 root

asci@ubuntu:~/Python\$ ||

6..d.n..)...c...s.AW!.c_.I|...M.j.q.....i/..i~...a,j..}@.p/ \.*b..d.=.J .4....].. .1h.X...1>..~V..M. ..v.gws \...@...!j.:JD.....B...'_@....z.c....0@..

Y....i...q...~..p.....N..-5..?L.....

0 S 🗙 ३ 🛏 🚽 🗐 🔳 0 0 1 \mathbf{Q} Expression... tcp.stream eq 1 No. Time Source Destination Protocol Length Info 102 SETTINGS[0] 53 4.839659 192.168.2.132 172.217.1.46 HTTP2 54 4.839770 172.217.1.46 192.168.2.132 TCP 60 443 → 47220 [ACK] Seg=3471 A 55 4.839776 172.217.1.46 192.168.2.132 TCP 60 443 → 47220 [ACK] Seq=3471 A HTTP2 56 4.839816 192.168.2.132 172.217.1.46 88 WINDOW UPDATE[0] 172.217.1.46 57 4.839943 TCP 60 443 → 47220 [ACK] Seg=3471 A 192.168.2.132 58 4.840049 192.168.2.132 172.217.1.46 HTTP2 116 HEADERS[1]: HEAD / 60 443 - 47220 [ACK] Seq=3471 Ad 59 4.840160 172.217.1.46 192.168.2.132 TCP 172.217.1.46 60 4.840244 192.168.2.132 HTTP2 84 SETTINGS[0] 61 4.840344 172.217.1.46 192.168.2.132 TCP 60 443 → 47220 [ACK] Seg=3471 A 62 4,934962 HTTP2 172.217.1.46 192.168.2.132 84 SETTINGS[0]

HTTP:

Frame 63: 317 bytes on wire (2536 bits), 317 bytes captured (2536 bits)

Ethernet II, Src: Vmware_fc:9c:22 (00:50:56:fc:9c:22), Dst: Vmware_9d:cd:0c (00:0c:29:9d:cd:0c)

192 168 2 13

Internet Protocol Version 4, Src: 172.217.1.46, Dst: 192.168.2.132

172 217 1 46

Fransmission Control Protocol, Src Port: 443, Dst Port: 47220, Seq: 3501, Ack: 518, Len: 263

Secure Sockets Layer

HyperText Transfer Protocol 2

···)····P V··"··E 00 0c 29 9d cd 0c 00 50 56 fc 9c 22 08 00 45 01 2f 4a 18 00 00 80 06 7e 7d ac d9 01 2e c0 a8 ·/J.....~}.....t.- B>-@--P 02 84 01 bb b8 74 11 2d 42 3e a8 40 1c b9 50 18 fa f0 a7 80 00 00 17 03 03 01 02 97 0e 0f 7f 22 fe ae 7a 15 6e ·h··B··· ··z·n·K[19 04 42 9a 1e f8 a6 68 ab 4b 5b adt · · I9 z · · · · W· 20 71 64 74 c9 e3 49 39 7a 1f 84 83 0f 77 83 f6 48 92 d4 92 38 5a 7e c5 27 eb f4 87 de ce e8 21 H---8Z~- '-----! c9 cd 9e 80 2c 29 86 21 ee 46 9f 6d d8 2c fe 68 ····,)·! ·F·m·,·h v3.....x_gU... 76 33 a2 87 11 8f 2e 11 78 5f c0 67 55 f3 06 09 K L 4b 87 a0 2e 94 88 15 18 04 bb e1 ab 96 4c f8 99 ··&···· ?"&F/·01 b3 9f 26 96 12 a7 87 84 3f 22 26 46 2f d5 4f 31 b7 b5 13 69 33 98 d6 e8 98 bf 1f 7d 8d 12 ce 7f ···· 13···· }···· }···· 75 9a b2 36 17 4a 12 ea c1 c1 ee a2 2f 2b 79 fd u · · 6 · J · · · · · /+v · · · O · z · cm · · · I · i · · a4 82 51 1d 7a eb 63 6d f5 ec 8d 49 d9 69 de bc 0c fb cf 28 34 7b ae 04 3c 89 f2 42 14 b2 17 87 ····(4{··· <···B····· 2f 74 4e 7a 85 62 e8 7f 49 b0 67 ea f1 db a6 c0 /tNz·b·· I·a···· 19 13 8f b4 0b 08 5c d8 d2 a8 ea 8b 6e 88 f2 af · · · · · · \ · · · · · n · · · eb 1c ec 80 4f 42 ff a3 9a e4 99 18 eb 4a dd 87 ····J·· 'FJ ... MB W-.u 0120 27 46 4a 06 9d 12 4d 42 10 b1 b2 1d 57 2d 96 75 0130 ca 00 f6 a8 85 30 6e 0a 76 86 3d d1 5f ····· 0n· v·=·

6 client pkts, 3 server pkts, 4 turns.
Entire conversation (422 bytes)
Find:
Find Next

Print

Save as...

33K Feb 26 09:18 test_ecdhe.pcap

Filter Out This Stream

root

Frame (317 bytes) Decrypted SSL (242 bytes) Decompressed Header (394 bytes)

Z test_ecdhe.pcap

X Close

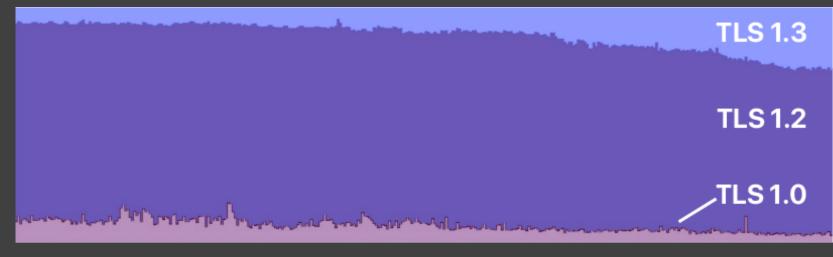
Back

17 HEADERS[1] · 301 Mover

TLS 1.3 vs. 1.2

- TLS 1.3 removed the cipher suites that plagued TLS 1.2 (like CBC)
- TLS 1.3 decryption requires ephemeral Diffie-Hellman keys that are established between the user's endpoint and the webserver
- How can we provide more cleartext features for machine learning?

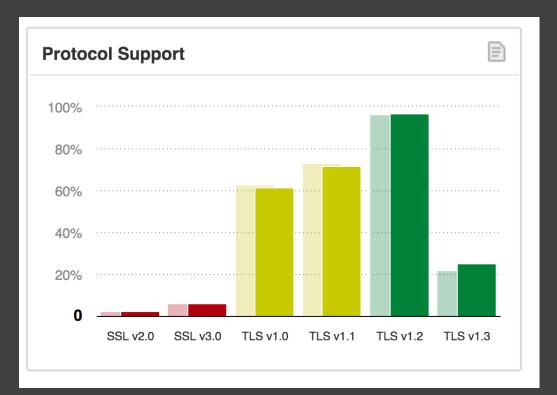
TLS 1.3 Downgrading

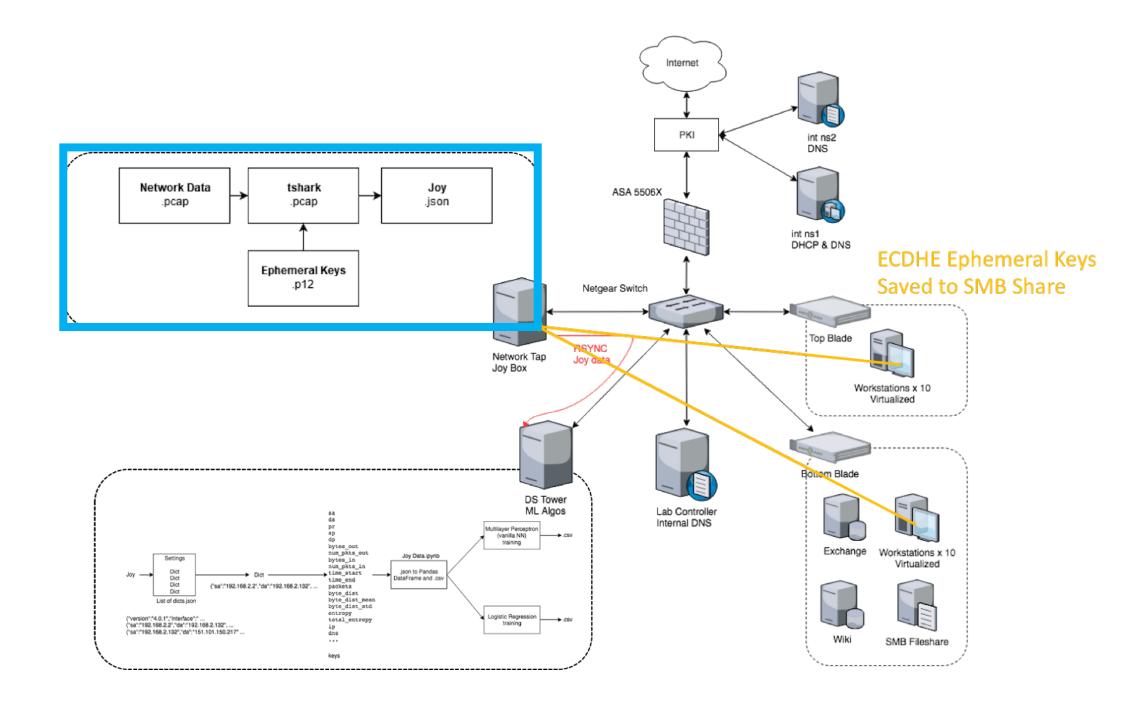

- Can't we just use TLS 1.2 if we ask nicely?
- Asking many top Alexa websites to downgrade their cipher suites breaks the website
 - Would have had to cherry pick websites that have yet to upgrade to modern crypto suites
 - Some modern libraries only provide TLS 1.3¹ or frameworks support TLS 1.3 by default
 - And the share of TLS 1.3 is growing quicker than the adoption of 1.2

¹https://github.com/facebookincubator/fizz)

TLS 1.3 Adoption

Browser	TLS 1.3 (%)
Chrome	30%
Firefox	27%
Safari	27%


Percentage of TLS 1.3 connections amongst web browsers as of Aug 2019


Cloudflare TLS version trends from May 2018 to May 2019 https://ietf.org/blog/tls13-adoption/

TLS 1.3 Adoption

- Qualys' SSL Pulse does a monthly scan across 150,000 SSL- and TLSenabled websites and provides a dashboard of distributions and protocol support.
- TLS 1.2 still reigns supreme (for now)

Qualys SSL Pulse https://www.ssllabs.com/ssl-pulse/

TLS

- Can't we just MiTM?
- We lost data visibility when using proxy servers (distinct IPs of user VMs) (MiTM proxy, Squid proxy) and neither of these proxies could save unencrypted traffic
 - https://github.com/mitm proxy/mitmproxy/issues/ 408#issuecomment-194415504
- Even with the keys, Wireshark could not save the decrypted pcaps *either*

kryptpt opened this Issue on Nov 13, 2014 · 5 comments

export traffic to pcap file #1016

mhils commented on Mar 9, 2016

Let me briefly summarize the current status of PCAP support in mitmproxy.

Export

The recommended way to do this is to (1) log the TLS master secrets with mitmproxy and (2) use a normal PCAP tool for packet capture. mitmproxy works on TCP connections, we don't deal with raw packets internally.

Import

@jbremer's httpreplay comes with an pcap2mitmproxy binary that transforms pcaps into mitmproxy dump files. Please just use this, we can't include it into mitmproxy as it's GPL3.

Future Work

It would be nice to have a way to transform mitmproxy dumps into artifical PCAPs. We don't plan to implement this ourselves at the moment. External contributions are of course welcome.

👍 1

mhils commented on Aug 23, 2016

Member •

() Closed

Member ...

Closing this as there's we don't intend to work on PCAP export in the near future.

ninino ologea (110 oli 7 (ag 20, 2010

 🎗 mhils referenced this issue on Jan 22, 2018

Save micinproxy encrypted traines in a peap ion hat for further analysis #2806 @ Closed

For Future Reference

- Mitmpcap, a mitmproxy addon script, exports traffic to PCAP file, so you can view the decoded HTTPS or HTTP/2 traffic in other programs.
 - https://github.com/muzuiget/mitmpcap

TLS

- Asking nicely didn't work
- MiTM didn't work
- How do we can we provide those features?
 - Mirror websites in the cloud to control the cipher suite used
 - Con: Adds artificiality to data
 - Pro: Reduces the amount of third party advertiser traffic
- Residual traffic was TLS 1.3 (OS updates)
- Majority of web traffic successfully uses TLS 1.2

	eolP Lookups	In [53]:	<pre>OCSVM_model.fit_predict(X) OCSVM_model.score_samples(X) #Accuracy Rating</pre>	
			7.65590373, 7.65948639, 3.28499574, 7.65545312, 1.99934744, 7.65574556, 7.68814426, 7.65564252, 7.65594118, 7.70586689,	
			7.56241694, 7.6667588 , 5.07693838, 7.65625653, 6.20145773, 6.29527442, 8.44828022, 4.69793124, 8.63261821, 7.22238043,	
In [53]:	OCSVM_model.fit_predict(X)		7.66436065, 7.65594264, 7.66013036, 7.65547255, 7.65547001,	
	OCSVM_model.score_samples(X) #Accuracy Rating		4.67214869, 8.4406612 , 7.64906761, 7.65590361, 2.05470579, 7.67466059, 7.65606004, 7.65638857, 7.65605016, 5.69651846,	
Out[53]:	array([123.16765345, 114.61292808, 112.58887769,		7.65604011, 7.65602986, 1.99934744, 7.65638857, 7.65543142, 7.65596433, 4.48024331, 7.68243619, 7.65600881, 7.65594118,	
	206.31248729, 198.57973916])		7.65594118, 7.65623123, 7.65594118, 7.65623123, 7.65594118,	
			7.65594118, 7.65594118, 7.655998 , 5.0461702 , 6.60880411, 6.29527442, 7.67681701, 7.65598699, 7.65597578, 4.95800579,	
Tn (541:	<pre>#Y.mean() # null error rate</pre>		5.82514926, 8.0046963 , 6.82367588, 7.65638857, 7.67498135,	
	"Thought " Harr offor 1000		7.65596705, 7.65595277, 7.65638857, 7.66428588, 7.67939458, 8.42838423, 7.65594096, 8.57816055, 8.48246519, 8.23473639,	
	# 1 0 001 - 00 00		7.41342345, 7.78831953, 8.39948691, 7.65592894, 6.32081566, 7.82591689, 7.82652261, 7.82718125, 6.0362733 , 7.82718125,	
IN [55]:	<pre># 1 - 0.001 = 99.99 #coeff_df = DataFrame(list(zip(X.columns,np.tran</pre>		7.82591689, 7.82652261, 7.23798668, 7.82718125, 7.82652261,	
	#coeri_ur = bacarrame(risc(zip(x.corumns,np.cram		7.6592379 , 7.82591689, 7.82718125, 7.82652261, 7.03324173, 7.82718125, 6.0362733 , 7.65893237, 7.65893237, 7.65893237,	
			7.65893237 4.32214571. 7.65593318. 4.32162018. 7.65593154.	
In [56]:	<pre># Split data #Y train Y toot Y train Y toot = train toot onli </pre>	In [54]:	<pre>#Y.mean() # null error rate</pre>	
	<pre>#X_train,X_test,Y_train,Y_test = train_test_spli</pre>	Tn (551+	# 1 - 0.001 = 99.99	
			<pre>#coeff_df = DataFrame(list(zip(X.columns,np.transpose(log_model.coef_))))</pre>	
In [57]:	<pre>#log_model2 = LogisticRegression(solver='sag',ma #log_model2 & Site(" tracing " Title and all a site of the second a</pre>	TR (561)	# Calify data	
	<pre>#log_model2.fit(X_train,Y_train) # Fit new model</pre>	IU [20]:	<pre># Split data #X_train,X_test,Y_train,Y_test = train_test_split(X,Y)</pre>	
In [58]:	<pre>#class_predict = log_model2.predict(X_test) # Ru</pre>	In [57]:	<pre>#log_model2 = LogisticRegression(solver='sag',max_iter=1000) #log_model2.fit(X_train,Y_train) # Fit new model with training data</pre>	
In [59]:	<pre>#print(metrics.accuracy_score(Y_test,class_predi</pre>	In [58]:	<pre>#class_predict = log_model2.predict(X_test) # Run a prediction with X_test da</pre>	taset
		In [59]:	<pre>#print(metrics.accuracy_score(Y_test,class_predict)) # Compare Y_test to pred</pre>	iction
TR (601.	<pre>nrint(" %e seconds" % (time time() - star</pre>			
	1767.6108849048615 seconds	IN [00]:	<pre>print(" %s seconds" % (time.time() - start_time))</pre>	
	1/0/.0100049040015 Seconds		2.421576738357544 seconds	

Hosting

- Although PCAPs are better than Netflows, PCAPs are much larger
- Difficult to find a place to host this size of a dataset (60gb) as a research set unless you're paying for it

Resources

 If you decide to provide a dataset to the community or need data to provide research to the community, these resources may help

Other cool datasets

- Malware
 - https://github.com/endgameinc/ember
 - http://amd.arguslab.org/
- Canadian Institute for Cybersecurity
 - Android Malware
 - DDoS
 - CICIDS
 - Botnet
 - https://www.unb.ca/cic/datasets/index.html

Possible Hosts

- Impact Cybertrust
 - https://www.impactcybertrust.org
- SNAP Large Network Dataset Collection
 - snap.stanford.edu/about.html
- networkrepository.com
 - Largest network repository across 30 domains (bioinformatics, etc)
- AWS Dataset Program
 - https://aws.amazon.com/opendata/public-datasets/
- AWS Glacier
 - ~ \$210.6 for 10 years (60gb)
 - https://docs.aws.amazon.com/amazonglacier/latest/dev/uploadingarchive-mpu.html

Why didn't you just use...

- The Wall of Sheep dataset
- The DEF CON dataset
- The NCCDC dataset (or any of the regional sets)
- None of these datasets are labelled!

Future Work

- Study machine learning algorithms trained using this data
 - Determine how to make them more robust against adversarial examples
- Operational Technology (OT)-specific protocols with serial and serial-over-Ethernet traffic
 - Or a hybrid IT-OT network
- Capture the Flag competitions could be used to gather more participation
 - Would need a separate virtual environment for each participant

Other Major References

- Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network intrusion detection. In *Proceedings of the 2010 IEEE Symposium on Security and Privacy*, SP '10, pages 305–316, Washington, DC, USA, 2010. IEEE Computer Society.
- Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D. Tygar. Adversarial machine learning. *In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence*, AlSec '11, pages 43–58, New York, NY, USA, 2011. ACM.
- Blake Anderson and David McGrew. Identifying encrypted malware traffic with contextual flow data. In Proceedings of the 2016 ACM workshop on artificial intelligence and security, pages 35–46. ACM, 2016.
- Blake Anderson and David McGrew. Machine learning for encrypted malware traffic classification: Accounting for noisy labels and non-stationarity. *In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '17, pages 1723–1732, New York, NY, USA, 2017. ACM.
- Tomás Pevný, Martin Komon, and Martin Rehaky. Attacking the ids learning processes. pages 8687–8691, 10 2013.

Thank you!

• Questions?