
Attacking Secondary
Contexts in Web

Applications
Sam Curry

whoami

● Sam Curry
(@samwcyo)

● Full time bug bounty hunter
(3 years on-and-off)

● Passionate about application
security/research
(run blog @ samcurry.net)

How I previously thought all HTTP servers worked...
● Application files are stored/accessed in webserver folder

○ /var/www/html/
○ /usr/share/nginx/html/
○ … etc …

● GET /index.html
○ Tries to load in /webserver/index.html

● GET /folder/index.html
○ Tries to load in /webserver/folder/index.html

● Very straightforward and simple

Different ways web applications do routing
● Not actually dealing with stored files, rather using defined routes

Different ways web applications do routing
● Sent across middleware and proxies, sometimes through load balancers...

Different ways web applications do routing

● Fetching content from APIs
○ Sending a 2nd HTTP request
○ Usually a different host
○ Common lack of input validation

● Sometimes carries auth info to API
○ Underlying authentication models

■ Sometimes not present…

Methods for identifying application routing
● Directory traversal

○ Does “/api/../” return something different than “/”?

● Fuzzing using control characters
○ %23 (#), %3f (?), %26 (&), %2e (.), %2f (/), %40 (@)
○ Double/triple URL encoding

● Does the behavior suddenly change for certain directories?
○ Why does “/images/” return different headers than “/”?

● Are there any nice bits of information we can catch?
○ “internal.company.com:8080 returned the following: ‘500 internal server error’”

Identifying application routing - Examples

● We can identify /favicon.ico* is being served through CloudFront
● What if this was being served through an S3 bucket?

○ GET /favicon.ico/..%2f..%2fattackersbucket%2fxss.html
○ (Proxied as https://s3.amazonaws.com/yahoo-bucket/favicon.ico/../../attackersbucket/xss.html)

Identifying application routing - Examples

● Requesting the webroot
behaves totally normally

● Browsing to /api/v1/ reveals
different behavior

○ Different headers, content-type,
etc.

● We can confirm the routing is
separate via traversing
backwards to “/” on the API
server via “/../../../”

Common issues with secondary contexts
● Data is being served across extra layers

○ Introduces translation issues like HTTP request smuggling
○ CRLF injection in weird places

● Developers do not expect users to be able to control parameters/paths
○ Functionality you would normally see in a development environment is accessible

(?debug=1, /server-status,

● Information disclosure
○ Internal HTTP headers, access token

● SSRF and XSS via manipulating response content
○ Finding an open redirect in 2nd context = server issuing/potentially rendering arbitrary request

Identifying application routing - Examples

● Passing in “%23” turns into “#”
and makes the underlying
request fail as the parameters are
dropped

● What control do
we have over the
second request?

● How could this be
exploited by an
attacker?

Identifying application routing - Examples

● Traversing backwards allows us to overwrite the API paths
● Indexing for user ID is based on the session cookie

Identifying application routing - Examples

● We can traverse the internal API, overwrite the user ID, then read a victim’s file
● All other API calls are also accessible

GET /files/..%2f..%2f + victim ID + %2f + victim filename

Common issues attacking secondary contexts
● APIs will oftentimes not normalize request URLs

○ Impossible to traverse API calls

Common issues attacking secondary contexts
● Underlying authentication makes access control issues impossible

○ Even if an API is internal, there isn’t any benefit besides widened attack surface

Identifying application routing - Examples

● HTTP request loads the specified invoice PDF
● IDOR doesn’t work, returns 404 (somewhat interesting)
● Are they doing anything weird/exploitable here?

Identifying application routing - Examples

● GET /my-services/invoices/..%2finvoices%2fINV08179455/pdf
○ This works (200 with PDF content)

● GET /my-services/invoices/..%2f..%2fmy-services%2finvoices%2fINV08179455/pdf
○ This doesn’t (404 without PDF content)

● This doesn’t really prove anything, but it’s interesting
○ If it were traversing on the same box/normally, it’d likely load both
○ This is probably worth at least investigating a little bit

Identifying application routing - Examples

● There’s a possibility a directory
before “/invoices/” is indexing our
uploads
(/:userid/invoices/:invoiceid)

● If we can guess this directory, we
can potentially view other users
invoices

● Lots of things to guess here...

Identifying application routing - Examples

● Intruder (0-1000000) not working
● Email not working
● Username not working

● Error message on another part of
the app discloses the following…
{"error":"Id samwcurry@gmail.com#vj does
not have permission to modify the domain
example.com."}

● Moment of truth...

… but ...

Identifying application routing - Examples

● Attacker can read anyones PDF if they know their…
○ Email address
○ Invoice number

● An alright bug… I guess....
● Is this behavior anywhere else on the app?

Identifying application routing - Examples

● Definitely a more interesting part of the website
● How is payment information fetched?

Identifying application routing - Examples

● Maybe this is stored the same way, but if so…
○ What is the directory name?
○ How can we retrieve that unique ID?

Identifying application routing - Examples

● Maybe this is stored the same way, but if so…
○ What is the directory name? (/paymentmethods/)
○ How can we retrieve that unique ID?

Identifying application routing - Examples

● Maybe this is stored the same way, but if so…
○ What is the directory name? (/paymentmethods/)
○ How can we retrieve that unique ID? (trick with /subscriptions/)

● GET /subscriptions/:id
 +
Same trick from before
 =
Traversing to view
payment method IDs

https://www.luminate.com/subscriptions/..%2f..%2f + email + %2f + id

Identifying application routing - Examples

GET /my-services/edit-payment-method?uid=../../
samwcurry@gmail.com%23vj/paymentmethods/2c92a00871083a4600fa287ce52fe

Identifying application routing - Examples

● Escalated severity from reading users invoices to reading payment information
● The only piece of information we need is the victim’s email address

○ The subscription ID can be brute forced
○ We obtain the payment ID from the subscription ID traversal

Exploring all possibilities
● Although directory traversal is useful for these types of bugs,

it isn’t necessary for various attacks

● In some cases, API calls behave similarly to a SQL query evaluating to
true/false

● Impact of course varies per case, but there are lots of interesting possibilities

Case Study - Authy 2FA bypass

● Authy - 2FA service, installable library
● User -> [Client -> Authy]

Case Study - Authy 2FA bypass

● When reading the response from Authy, the server only checked for…
○ JSON {“success”:true}
○ HTTP 200 OK

● How is the users token sent to Authy?
this._request("get", "/protected/json/verify/" + token + "/" + id, {}, callback, qs);

● GET /protected/json returns both 200 OK and JSON {“success”:true}
○ Is it really that simple?

Case Study - Authy 2FA bypass

Universal 2FA bypass for huge portion of Authy libraries
(credit: Egor Homakov, @homakov)

Review
● Lots of unique opportunities in attacking secondary contexts

○ Requests often sent internally
○ Often less restrictive environments
○ Authorization sometimes seemingly arbitrary (200 v.s. 403 when you control route)

● Very complicated problem for developers
○ Requests sent between servers with different behaviors
○ Hard to isolate internal APIs where user data isn’t dangerous
○ Sanitizing for paths is relatively difficult 2-3 proxies deep

● Lots of new research relative to similar approaches
○ Using “Max-Forwards” header to figure out more information about your requests

(https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html)

https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html

Thank you Kernelcon!
● Questions? Maybe answers?

